Intersection of conjugacy classes with Bruhat cells in Chevalley groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection of Conjugacy Classes with Bruhat Cells in Chevalley Groups

Let (G,B,N, S) be a Tits system. Some aspects of intersections of conjugacy classes ofG with Bruhat cellsBẇB have been investigated by several authors (see e.g., [St1], [K], [V] and [VS]). Here w ∈ W = N/(B ∩N) and ẇ ∈ N is a preimage of w with respect to the natural surjection N → W . In particular, it is desirable to learn how a conjugacy class C of G is related to those conjugacy classes Cw ...

متن کامل

On Intersections of Conjugacy Classes and Bruhat Cells

For a connected complex semi-simple Lie group G and a fixed pair (B, B−) of opposite Borel subgroups of G, we determine when the intersection of a conjugacy class C in G and a double coset BwB− is non-empty, where w is in the Weyl group W of G. The question comes from Poisson geometry, and our answer is in terms of the Bruhat order on W and an involution mC ∈ W associated to C. We study propert...

متن کامل

Nilpotent groups with three conjugacy classes of non-normal subgroups

‎Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$‎. ‎In this paper‎, ‎all nilpotent groups $G$ with $nu(G)=3$ are classified‎.  

متن کامل

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

‎Let G be a finite group and Z(G) be the center of G‎. ‎For a subset A of G‎, ‎we define kG(A)‎, ‎the number of conjugacy classes of G that intersect A non-trivially‎. ‎In this paper‎, ‎we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them‎.

متن کامل

CALCULATING CONJUGACY CLASSES IN SYLOW p-SUBGROUPS OF FINITE CHEVALLEY GROUPS

In [8, §8], the first author outlined an algorithm for calculating a parametrization of the conjugacy classes in a Sylow p-subgroup U(q) of a finite Chevalley group G(q), valid when q is a power of a good prime for G(q). In this paper we develop this algorithm and discuss an implementation in the computer algebra language GAP. Using the resulting computer program we are able to calculate the pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2004

ISSN: 0030-8730

DOI: 10.2140/pjm.2004.214.245